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In contrast to equilibrium systems, nonequilibrium steady states depend explicitly on the underlying dynam-
ics. Using Monte Carlo simulations with Metropolis, Glauber, and heat bath rates, we illustrate this expectation
for an Ising lattice gas, driven far from equilibrium by an “electric” field. While heat bath and Glauber rates
generate essentially identical data for structure factors and two-point correlations, Metropolis rates give no-
ticeably weaker correlations, as if the “effective” temperature were higher in the latter case. We also measure
energy histograms and define a simple ratio which is exactly known and closely related to the Boltzmann factor
for the equilibrium case. For the driven system, the ratio probes a thermodynamic derivative which is found to
be dependent on dynamics.
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I. INTRODUCTION

In statistical physics, Monte Carlo(MC) simulations play
a major role for the study of phase transitions and critical
phenomena, as well as ordered and disordered phases[1].
Leaving out many details of the art of computing, the broad
outline of the simulation process is easily summarized. For
systems both in and far from thermal equilibrium, dynamic
ratesWfs→s8g are defined which specify how a given con-
figuration s evolves into a new one,s8, when an update is
attempted. The simulations then generate long sequences of
such configurations. Once initial transients have decayed,
time-independent(stationary) observables—which will be
our focus in the following—can be computed as configura-
tional averages. For a system in thermal equilibrium, charac-
terized by a HamiltonianH, it is well known thatanychoice
of W’s, as long as they satisfy detailed balance with respect
to H, will generate configurations distributed according to
thesameBoltzmann factor, exps−bHd. In other words, time-
independent observables, including both universal and non-
universal properties, are independent of the choice of rates,
provided detailed balance holds. The resulting freedom can
be exploited to design particularly efficient codes, such as
cluster algorithms[2]. In stark contrast, no such “decou-
pling” of dynamic and stationary characteristics occurs for
systems driven out of equilibrium: even though nonequilib-
rium steady states(NESS) display time-independent observ-
ables, these are sensitive to modifications of the dynamic
rates. This behavior can be traced back to the violation of
detailed balance which is an inherent feature of nonequilib-
rium systems[3,4].

While the sensitivity of NESS to the choice of the dynam-
ics has been noted before[5,6], no systematic computational

study has yet been undertaken. In this paper, we consider two
models: the standard Ising lattice gas and its nonequilibrium
cousin, the driven Ising lattice gas(or KLS model, after the
initials of its inventors[5]). Both involve particles diffusing
on a lattice, subject to an excluded volume constraint and an
(attractive) nearest-neighbor interaction. The total number of
particles remains conserved. For the Ising lattice gas, the
rates for particle hops to unoccupied nearest-neighbor sites
are chosen to satisfy detailed balance, with respect to the
Ising Hamiltonian. In contrast, the driven version involves an
additional external force which acts on the particles much
like an electric field on(positive) charges: aligned with a
lattice axis(e.g.,y), it favors particle hops along its direction.
In conjunction with periodic boundary conditions, this bias
breaks detailed balance and establishes anonequilibrium
steady state. This NESS differs drastically from its equilib-
rium counterpart, exhibiting generic long-range correlations,
an interesting universality class, and highly anisotropic or-
dered phases[3].

To illustrate the importance of the transition rates for the
NESS, we measure structure factors and two-point spatial
correlations in the driven case, using Metropolis[7], Glauber
[8], and heat bath[9] rates. To date, simulations of the driven
model have focused almost exclusively on Metropolis rates
[10]; other rates have only been invoked in some analytic
studies[6,11]. While the first two are easily implemented for
conserved particle number, an appropriate generalization of
heat bath rates is designed here. To avoid complications due
to inhomogeneous ordered phases, we choose temperatures
above or at criticality. For comparison, we also show the
same quantities for the(equilibrium) Ising model: as ex-
pected, they are found to be identical up to statistical fluc-
tuations, and almost perfectly isotropic. In stark contrast,
when the drive is turned on, we find strongly anisotropic
behavior and markedly different values for the three choices
of rates. While all driven cases exhibit the signatures of long-
ranged decay in real space, the correlations are much weaker
for Metropolis rates than for either Glauber or heat bath
ones.
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As an additional probe into the differences between the
standard Ising lattice gas and its driven cousin, we construct
energy histograms(with respect to the Ising Hamiltonian) for
both. For the equilibrium case, these are of course intimately
related to the Boltzmann distribution and contain a wealth of
thermodynamic information. For the driven system, they are
easily measured in a simulation, but their physical interpre-
tation has not been established yet. Here, we consider a
simple histogram ratio whose equilibrium limit is easily de-
rived, and compute its nonequilibrium counterpart.

This paper is organized as follows. We first introduce our
models and the three types of dynamics, followed by a brief
discussion of our key observables. We then present our data
for two-point correlations, structure factors, and energy his-
tograms. We conclude with a summary, offering a conjecture
for the origin of the observed differences between the three
rate functions.

II. BACKGROUND

A. Models

In this section, we introduce our two prototype models,
namely, the Ising lattice gas and its driven version. Both are
defined on anM 3L square lattice in two dimensions, with
fully periodic boundary conditions. Each sitei is either oc-
cupied by a particle or empty, which we denote by a spin
variablesi taking two values: +1(occupied) or −1 (empty).
For the equilibrium Ising model, we can specify a(global)
Hamiltonian:

Hfsg = − Jo
ki,j l

sisj , s1d

where the sum runs over nearest-neighbor pairs of sites, and
J.0 denotes the binding energy. In order to access the Ising
critical point, we consider only half filled systems:
sLMd−1oisi =0. When coupled to a heat bath at temperature
T, the probability,P0ssd, to find the system in configuration
s is controlled by the well-known Boltzmann factor:P0ssd
~exps−bHd with b=1/kBT. Here and in the following, the
subscript 0 will always denote equilibrium quantities.

The usual technique for simulating such a distribution is
to introduce a dynamics in configuration space. We choose a
suitable set of transition rates,Wfs→s8g, which specify
how a configurations evolves into a new one,s8, in unit
time. For simplicity, we only consider transitions in whichs
and s8 differ by a single nearest-neighbor particle-hole ex-
change. Now, the probability distributionPss ,td becomes
time dependent and satisfies a master equation(written, for
simplicity, in continuous time):

]tPss,td = o
s8

hWfs8 → sgPss8,td − Wfs → s8gPss,tdj.

s2d

Its stationary solution,Pssd; limt→`Pss ,td, controls all
time-independentproperties. It is unique, under fairly ge-
neric conditions on the rates. To ensure that the desired equi-
librium distribution P0ssd is reproduced, one choosesW’s
which satisfy the detailed balance condition:

Wfs → s8g
Wfs8 → sg

=
P0ss8d
P0ssd

= e−bhHfs8g−Hfsgj. s3d

Of course, this just ensures that everyh¯j bracket in Eq.(2)
vanishes. An important quantity which enters here is the en-
ergy difference of two configurations,s8 ands:

D0 ; Hfs8g − Hfsg. s4d

A simple way of satisfying detailed balance is to impose
rates which are functions of this difference alone:Wfs
→s8g;wsbD0d where the functionw must satisfy

wsxd = ws− xde−x, s5d

by virtue of Eq.(3) but is otherwise arbitrary. All three rate
functions to be considered below—Metropolis, Glauber, and
heat bath—are constructed in this way, but differ in some
important details.

An obvious way of driving a system into anonequilib-
rium steady state is to impose rates thatviolate detailed bal-
ance. A prototype model that has attracted much interest due
to its remarkable properties is the driven Ising lattice gas(or
KLS model) [3,5]. It differs from the standard Ising model
through the presence of an external forceE, aligned with a
particular lattice axis(the y direction). When a particle at-
tempts to jump to an empty nearest-neighbor site, it is not
only affected by the local energetics, incorporated in Eq.(1),
but also by the drive: similar to an electric field,E favors
(suppresses) particle hops along(against) the selected direc-
tion, leaving transverse exchanges unaffected. A straightfor-
ward extension of Eq.(4) is to include the work done by the
field, i.e., to define a local “energy” difference of the form

D ; Hfs8g − Hfsg − eE. s6d

Here,e=0 for two configurations differing only by a trans-
verse jump, ande= +1 s−1d if the particle hops along
(against) the field in the move. We can now choose rates of
the form(5) with x=bD. However, it is essential to note that
the combination of uniform drive and periodic boundary
conditionsprecludesthe existence of aglobal Hamiltonian
for the driven system. A unique steady statePssd establishes
itself but cannot be expressed in terms of a Boltzmann factor.
To maximize the nonequilibrium effects, we choose infiniteE
for our simulations, i.e., a particle will never jump against
the field.

B. Three different rate functions

In this subsection, we introduce the three choices of tran-
sition rates—Metropolis, Glauber, and heat bath—which will
be compared in the following. For the first two choices, the
relevant quantity is the local energy difference between the
final ss8d and the initial ssd configuration. For the third
choice, the rate is independent of the initial configuration;
instead, the selection criterion involves the local energy dif-
ference of the two possiblefinal configurations,s and s8.
For the equilibrium Ising model, energy differences are eas-
ily computed from Eq.(4), and each rate satisfies the detailed
balance condition; for the driven model, we invoke Eq.(6),
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and detailed balance is violated. Random numbers are se-
lected uniformly from the interval(0,1).

Metropolis dynamics. For this choice of rates, we ran-
domly select a nearest-neighbor pairi, j of sites with differ-
ent occupanices,si Þsj . We denote the original configura-
tion ass and lets8 be the configuration withsi, sj switched
(i.e., si8=sj ; sj8=si). The transition froms to s8 is con-
trolled by the Metropolis rate function,wMetsxd=mins1,e−xd.
To be specific, we first computex=bD. If xø0, the attempt
(exchange) is accepted; if, however,x.0, we draw a random
numberz and perform the exchange only ifzøe−x. Clearly,
energetically favorable moves are always performed while
only a fraction of costly ones is accepted. As temperature
increases, this fraction approaches 1 in a monotonic fashion.

Glauber dynamics. Similar to Metropolis dynamics, the
implementation of this algorithm involves, first, selecting
two nearest-neighbor sites with different occupancies. Again,
s8 refers to the configuration with switched occupancies. Ex-
changes are then controlled by the Glauber rate function,
wGlsxd=1/s1+exd. Again, we computex=bD and draw a
random numberz. If zø1/s1+exd, we accept the exchange;
otherwise, it is rejected. While energetically favorable moves
are not necessarily accepted, they are always more probable
than unfavorable ones.

Heat bath dynamics. As pointed out above, the interpre-
tation of s and s8 is different here: These refer to the two
possible final configurations of the central particle-hole pair.
Showing only its local neighborhood in the lattice, we define

s ;
s3 s4

s2 + 1 − 1 s5

s1 s6

ands8 ;
s3 s4

s2 − 1 + 1 s5

s1 s6

s7d

for bonds along thex axis, and

s ;

s2

s1 + 1 s3

s6 − 1 s4

s5

ands8 ;

s2

s1 − 1 s3

s6 + 1 s4

s5

s8d

for bonds alongy; i.e., parallel to the drive. We also define

h ; o
i=1

3

si − o
i=4

6

si . s9d

In equilibrium, the heat bath algorithm is of course isotropic:
For both types of bonds, we select configurations if a ran-
dom number z satisfies zø1/s1+e−2bhd; otherwise, we
chooses8. For the driven case, this rule is only applied to
bonds transverse to the drive; for parallel bonds, at infiniteE,
we choose configurations with probability 1.

To appreciate the commonalities and differences of the
three algorithms, it is useful to consider a simple example
with infinite drive. Figure 1 shows a central pair and a par-
ticular configuration of its six nearest neighbors. If the pair is
aligned with the field direction[Figs. 1(a) and 1(b)], all three

dynamics generate the same outcome: each will select Fig.
1(a) as the final configuration with probability 1 for any
value ofbJ.

This is not the case for bondstransverseto the field[Figs.
1(c) and 1(d)]. For the purposes of this argument, we choose
bJ=0.1. We denote the configuration shown in Fig. 1(c) [(d)]
by sfs8g. The energy differenceD=12J is easily computed
from Eq. (4) or Eq. (6). Given a random numberz, the Me-
tropolis algorithm will accept a transition froms to s8 only
if zøe−12bJ.0.30, while the reverse transition(s8 to s) is
always accepted. For Glauber dynamics, the transition from
s to s8 is accepted ifzø1/s1+e12bJd.0.23, while the re-
verse transition is accepted ifzø1/s1+e−12bJd.0.77. Fi-
nally, the heat bath algorithm will chooses as the final state
if zø1/s1+e−12bJd.0.77 , ands8 otherwise.

The notable differences are these: First, the Metropolis
algorithm accepts unfavorable moves with higher probability
than either heat bath or Glauber:e−xù1/s1+exd. As a result,
it is more likely to explore unphysical domains of configu-
ration space. Yet, it also accepts favorable moves with higher
probability, and thus leads to a more active dynamics. Com-
paring heat bath and Glauber rates, we note that both subdi-
vide the unit interval into the same subsections(0.23 vs
0.77). Hence they generatestatisticallyvery similar trajecto-
ries in configuration space. Update by update, however, the
trajectories can differ: if, e.g., the initial configuration iss
and the random number turns out to be 0.1, the heat bath
algorithm will chooses8 as the final configuration, while the
Glauber rule leads to an exchange sincez,0.23. Yet, we will
see below that this subtle difference does not affect the data.

C. Structure factors and two-point correlations

Below their critical temperatures, both the Ising lattice
gas and the KLS model phase segregate into regions of high
and low density, by virtue of the conservation law on the
number of particles. Typical low-temperature configurations,
for both models, show a single strip of high-density phase
and its low-density mirror image. For the Ising model, the
strip orients itself such as to minimize the energetic cost of
interfacial length. In contrast, the low-temperature strip of
the KLS model isalwaysaligned with the direction of the
drive, and the minimization of interfacial length does not
play a dominant role(cf. Fig. 2). A quantity which easily
distinguishes disordered configurations from such inhomoge-
neous ones is the(equal-time) structure factor. Written in
spin language, it is defined as

Sskd =
1

MLKUoj
eik·jsjU2L . s10d

Here, k is a wave vector, taking discrete valuesk
=s2pnx/M ,2pny/Ld with nx=0,1, . . . ,M −1 and

FIG. 1. A central pair and a particular configuration of its six
nearest neighbors. Occupied sites are indicated by solid circles.
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ny=0,1, . . . ,L−1. For simplicity, we writeSsnx,nyd in the
following, and useSs1,0d andSs0,1d to detect strips aligned
with the y or x axis, respectively. For a perfectly ordered
strip aligned withy, Ss1,0d.0.41ML is maximized; in con-
trast, a disordered configuration results inSs1,0d=Os1d. Fur-
ther, the structure factor is the Fourier transform of the two-
point correlation function,Gsr d, defined via

Gsr d ; ks0srl − ks0lksrl. s11d

We assume translational invariance(modulo the lattice size)
and invoke the half filling constraint, whenceksrl=ks0l=0.
The same constraint imposes the sum ruleorGsr d=Ss0d=0.
Hence negative values ofGsr d for certain values of the ar-
gument should not come as a surprise.

D. Energy histograms

For both the equilibrium Ising model and its driven coun-
terpart, it is straightforward to accumulate a(normalized)
energy histogramHsE,bd, with respect to the energy func-
tion defined in Eq.(1). For the equilibrium Ising model,
H0sE,bd is intimately related to the Boltzmann distribution:
if WsEd denotes the density of states andZsbd the canonical
partition function, we have

H0sE,bd = Z −1sbdWsEde−bE. s12d

Clearly, the right-hand side is the probabilityP0sE,bd to find
the system with energyE. The power of the histogram
method[12] resides in the observation that, up to statistical
errors, a single histogram measured at temperature 1/b is
sufficient to constructP0sE,b8d at all other temperatures
1/b8:

P0sE,b8d =
H0sE,bde−sb8−bdE

o
E8

H0sE8,bde−sb8−bdE8
. s13d

This allows us to compute the moments of the energy distri-
bution as functions of temperature and extract a wealth of
thermodynamic information.

For the driven lattice gas,HsE,bd is easily compiled in a
simulation. However, Eq.(12) certainly does not hold for the
nonequilibrium steady state. In particular, exact solutions of
small systems[13] demonstrate unambiguously that, at a
given temperature, configurations with the same energy need
not have the same probability. At best, we can write, using
the Kronecker symbol,

HsE,bd = o
s

dE,HfsgPssd ; expf− FsE,bdg, s14d

whereFsE,bd is an as yet unknown function of its variables
which will certainly depend on the chosen dynamics.

In the following, we probeFsE,bd by considering a very
simple ratio: We measure two histograms at different inverse
temperatures,b1 andb2, and construct

RsE,E8d ;
HsE,b1d
HsE8,b1d

HsE8,b2d
HsE,b2d

s15d

for a range ofE,E8. In equilibrium, this ratio is just a simple
exponential: R0sE,E8d=expf−sb1−b2dsE−E8dg, since all
normalization factors cancel. For the driven system, little is
known except

RsE,E8d ; expfFsE,b2d − FsE,b1d − FsE8,b2d + FsE8,b1dg.

s16d

This form will be analyzed further below.
To conclude this section, we establish a few conventions

and summarize the technical details of the simulations. All
temperatures in the following are quoted in units ofJ/kB; an
important reference point is the Onsager temperatureT0
=−2/ lnsÎ2−1d.2.269[14] which marks the critical point of
the two-dimensional Ising model. The equilibrium lattice gas
and the driven system differ only in one parameter:E=0 vs
E=1000, respectively. Such a large value forE suppresses
(almost) all moves against the drive, and is therefore effec-
tively infinite. When a quantity, e.g., the critical temperature
for the driven system, has been measured in different dynam-
ics, we will use superscriptsM (Metropolis), H (heat bath),
andG (Glauber) to distinguish them, as inTc

M, Tc
H, andTc

G.
The data for structure factors and two-point correlations were
obtained on 1003100 systems while the histogram simula-
tions used a smaller system size, 40340. In each case, 1
Monte Carlo step(MCS) corresponds to one update attempt
per site on average. For the larger system, each run lasted
23106 MCS. The first 106 MCS were discarded to ensure
that the system had reached steady state, and data were taken
every 100 MCS over the second half of the run. For better
statistics, 20 independent runs were performed and averaged.
For the smaller size, 43106 MCS were discarded, followed
by 123106 measurements.

FIG. 2. Typical configurations on a 483432 lattice for the equi-
librium Ising model using heat bath dynamics atT1=2.00 (a) and
T2=2.80 (b), and for its driven cousin at three temperatures:T3

=2.90 (c), (d), T4=3.30 (e), (f), and T5=3.70 (g), (h). The first
(second) configuration at each temperature was obtained using Me-
tropolis (heat bath) dynamics. In each simulation, the data were
collected after discarding 23107 MCS for the equilibrium system
and 107 MCS for its driven counterpart.
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III. RESULTS

A. Typical configurations, two-point correlations,
and structure factors

We begin our discussion by showing a few typical con-
figurations of the driven system on a 483432 lattice. Figures
2(a) and 2(b) are obtained for the equilibrium case, just be-
low and above criticality. The preference for horizontal in-
terfaces is clearly seen in Fig. 2(a). The remaining configu-
rations[Fig. 2(c)–2(h)] all show the driven system, for heat

bath and Metropolis dynamics, at three different tempera-
tures. At the lowest temperatureT1=2.90 [Figs. 2(c) and
2(d)], the driven system is ordered for both dynamics. In
stark contrast to the equilibrium case, the interfaces between
high- and low-density regions are parallel toE and therefore
clearly not dominated by energetics. At a slightly higher tem-
perature,T2=3.30 [Figs. 2(e) and 2(f)], we observe the first
glaring discrepancy between the two dynamics: the configu-
ration generated by the heat bath algorithm is still ordered
while the Metropolis configuration is already disordered!

FIG. 3. The pair correlation function for the equilibrium system and its driven counterpart on a 1003100 lattice. The left column shows
the Ising lattice gas atT=2.47 with Metropolis(a), heat bath(b), and Glauber(c) dynamics; the right column shows the driven system at
T=3.60 with Metropolis(d), heat bath(e), and Glauber(f) dynamics.
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Eventually, atT3=3.70, both algorithms generate disordered
configurations. Clearly, the two algorithms lead todifferent
critical temperatures, withTc

M ,Tc
H. A rough estimate

based on our data[15] results in Tc
H=3.55±0.05 and

Tc
M =3.15±0.05. More precise estimates[16] are available

for Metropolis rates only:Tc
M =3. 198 01s19d.

To probe this apparent discrepancy between Metropolis
and heat bath rates further, and to explore the position of
Glauber rates in this triad, we turn to a more detailed analy-
sis. In Fig. 3, we show surface plots ofGsr d for the Ising
lattice gas[top row, Figs. 3(a)–3(c)] and the driven system
[bottom row, Figs. 3(d)–3(f)]. The three columns correspond
to the three different dynamics: Metropolis[Figs. 3(a) and
3(d)], heat bath[Figs. 3(b) and 3(e)], and Glauber[Figs. 3(c)
and 3(f)]. Figure 4 shows selected projections ofGsr d,
namelyGs0,yd and Gsx,0d, for equilibrium [Figs. 4(a) and
4(b)] and with infinite drive[Figs. 4(c) and 4(d)]. As dictated
by detailed balance, the correlation functions for theequilib-
rium systemare independent of dynamics: there are no dis-
cernable differences between Figs. 3(a)–3(c), and the data in
Figs. 4(a) and 4(b) collapse within statistical error bars(less
than 0.01 in absolute units). The chosen temperature,
T=2.47, is close enough to Ising criticality so that lattice
anisotropies are irrelevant:Gsr d is isotropic, with circular
contours centered on the origin. The small negative values
observed at large distances are a consequence of the sum
rule.

This simple picture becomes considerably more complex
when we turn to thedriven system[lower row of Fig. 3 and
Figs. 4(c) and 4(d)]. The chosen temperature,T=3.60, is
very close to our estimate for the critical temperature of heat
bath and Glauber rates,Tc

H.Tc
G.3.55 and about 15% above

Tc
M. We immediately note the strong anisotropy induced by

the drive. Further, there are noticeable differences between
Metropolis rates on one hand, and heat bath and Glauber

dynamics on the other. These are most easily observed in
Figs. 4(c) and 4(d). For Metropolis rates,GMs0,yd is positive
and decreases monotonically throughout[Fig. 4(c)], while
GMsx,0d drops rapidly below zero, displays a minimum, and
then recovers and approaches zero from below. These fea-
tures have been noted before[5], and are directly related to
the breaking of detailed balance[3,17,18]. The data for
Glauber and heat bath dynamics, while practically indistin-
guishable from one another, differ visibly from the Metropo-
lis ones. Considering correlations measured along the field
direction first, we observeGHs0,yd.GGs0,yd.GMs0,yd for
all y. In other words, Metropolis rates generate weaker cor-
relations, consistent with the lowerTc

M. Heat bath and
Glauber rates produce roughly the same correlations; more-
over, these show clear signatures of being very close to criti-
cality, evidenced by the distinctly positive value at the largest
y shown: GHs0,40d.GGs0,40d.0.07. Highly correlated
domains in the driven system are needle shaped, with the
needle pointing along the field, and this small, yet nonzero
value indicates that some of these domains are long enough
to span half the system. These precursors of ordering become
even more obvious when we turn to correlationstransverse
to the field: The secondary maximum in Fig. 4(d) indicates a
tendency towards forming thin stripes for heat bath and
Glauber rates.

The structure factors bear out this picture. Again, the in-
dependence from the rates, and the isotropy near criticality is
clearly displayed by the contour plots for the equilibrium
system, shown in Figs. 5(a)–5(c), and by the projections
shown in Figs. 6(a) and 6(b). In the driven case[Figs.
5(d)–5(f), 6(c), and 6(d)], the presence of strong anisotropy
is apparent, and the well-known discontinuity singularity at
the origin [18] is observed easily: limkx→0Sskx,0d
Þ limky→0Ss0,kyd. While these broad features characterize all
three dynamics, the absolute values of the structure factors
differ slightly from one another:SMskx,kyd is generally
smaller than eitherSHskx,kyd or SGskx,kyd. Moreover, the dis-
tance from criticality can be measured through the disconti-
nuity ratio,

S ;
limkx→0Sskx,0d

limky→0Ss0,kyd
,

which diverges asT→Tc [18]. Our data result inSM .7.5,
while SH.SG.34.SM. Our findings confirm, once again,
that the heat bath and Glauber data are effectively much
closer to criticality than those for Metropolis rates.

B. Histogram ratio analysis

In the final section, we turn to a brief investigation of
energy histograms. Since Glauber and heat bath rates pro-
duce essentially identical data, we restrict ourselves in the
following to just heat bath and Metropolis rates. To set the
scene, we first show two histograms for the equilibrium sys-
tem, generated at, and slightly above, criticality:T1=2.269
and T2=2.369 [Figs. 7(a) and 7(b), respectively]. As ex-
pected, the data for the different dynamics collapse very
well, within statistical errors. Not surprisingly, the peak po-

FIG. 4. Parallel and transverse two-point correlations for the
equilibrium system atT=2.47 (a), (b) and for the driven case at
T=3.60 (c), (d) on a 1003100 lattice. Each plot shows data for
three dynamics: Metropolis(asterisks), heat bath(filled squares),
and Glauber(open circles). In (a) and(b) all data collapse, while in
(c) and (d) only heat bath and Glauber data overlap.
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FIG. 5. Structure factor con-
tour plots for the equilibrium sys-
tem and its driven counterpart on
a 1003100 lattice. The left col-
umn shows the Ising lattice gas at
T=2.47 with Metropolis(a), heat
bath (b), and Glauber(c) dynam-
ics; the right column shows the
driven system atT=3.60 with Me-
tropolis (d), heat bath (e), and
Glauber(f) dynamics.

FIG. 6. Parallel and transverse
structure factors for the equilib-
rium system atT=2.47 (a), (b)
and for the driven case atT
=3.60(c), (d), on a 1003100 lat-
tice. Each plot shows data for
three dynamics: Metropolis(aster-
isks), heat bath (filled squares)
and Glauber(open circles). Within
error bars(not shown), the data
effectively collapse in(a) and(b),
while only heat bath and Glauber
data overlap in(c) and (d). Note
the different scale in(d).
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sition shifts to higher energies with increasing temperature,
while the width is largest at criticality. In Fig. 7(c), we plot
the corresponding histogram ratio, Eq.(15), and compare it
to the predicted exponential form. The agreement is of
course very good.

With Fig. 8, we enter unfamiliar territory. In analogy to
the equilibrium plots, Figs. 8(a) and 8(b) display the energy
histograms of the driven system, at two temperatures,T1
=3.550 andT2=3.650, for heat bath and Metropolis dynam-
ics. The chosen temperatures correspond to criticality and
slightly above for heat bath rates; for Metropolis rates, both
are well inside the disordered phase. In contrast to the equi-
librium case, the histograms clearly depend on the choice of
rates: the peak positions are considerably higher for Me-
tropolis than for heat bath rates. At the same time, the width
is largest for the system closest to criticality, i.e.,T1=3.550
with heat bath rates.

A comment is in order, concerning the judicious choice of
the two temperatures which enter the histogram ratio. It ap-

plies to both the equilibrium and the driven case. As we can
see from Figs. 7 and 8, each histogram displays a well-
developed peak. Energies far away from the peak position
occur rarely, so that histograms are plagued by large statisti-
cal errors in those regions. In order to yield a reliable ratio,
the corresponding histograms should overlap in their statis-
tically meaningful domains. Hence the two chosen tempera-
tures must not lie too far apart.

In Fig. 8(c), we present the histogram ratio for the driven
system. For each dynamics, two temperatures close to their
respective critical temperatures were chosen: 3.200 and
3.300 for Metropolis rates, and 3.350 and 3.650 for heat bath
rates. Remarkably, we observe that the histogram ratio for
both is again a simple exponential, i.e., lnR`sE,E8d~ sE
−E8d, at least over the range shown. In stark contrast to the
equilibrium case, there is noa priori reason here to expect
such behavior. Instead, it indicates thatFsE,bd in Eq. (16)
depends sufficiently smoothly onE as to allow an expansion
in D;E−E8:

FIG. 7. Normalized histograms for the equilibrium system using
heat bath(solid line) and Metropolis(dotted line) rates, atb1

=1/2.269 (a) and b2=1/2.369 (b). In (c), we show lnR0 vs E
−E8: Data are shown as open(Metropolis) and filled (heat bath)
squares; the solid line is the expected behavior, −sb1−b2dsE−E8d.

FIG. 8. Normalized histograms for the driven system using heat
bath (solid line) and Metropolis(dotted line) rates, atb1=1/3.550
(a) andb2=1/3.650(b). In (c), we show lnR` vs E−E8. Metropo-
lis data are shown as open circles and are taken atb1=1/3.200 and
b2=1/3.300; the heat bath data(filled circles) are taken atb18
=1/3.550 andb28=1/3.650. Two theoretical lines are shown: −sb1

−b2dsE−E8d (dotted) and −sb18−b28dsE−E8d (solid).
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ln R`sE,E8d = − DF ] FsE,b1d
] E

−
] FsE,b2d

] E
G + OsD2d

; − aD + OsD2d. s17d

Hence the slope of the data in Fig. 8(c) allows us to probe
a, as a function of temperature and dynamics. It manifestly
differs from the equilibrium formsb1−b2d. A more system-
atic study is required to extract, and interpret, its properties.

IV. CONCLUSIONS

We have simulated the equilibrium Ising lattice gas and its
driven nonequilibrium counterpart, using three different dy-
namics: Metropolis, Glauber, and heat bath. In the equilib-
rium case, all three rate functions satisfy detailed balance
with respect to the Ising Hamiltonian; as a consequence, all
stationary(time-independent) equilibrium quantities are ex-
pected to be independent of the choice of the dynamics.
Apart from unavoidable statistical errors, our equilibrium
data are of course perfectly consistent with this expectation.
For the driven system, this is no longer the case: due to the
drive, all three rate functions violate detailed balance, and
the “decoupling” of stationary properties from the chosen
dynamics no longer holds. Measuring two-point correlations
and structure factors in the disordered phase, we observe
distinct differences between the three dynamics. On the one
hand, Metropolis rates lead to a lower critical temperature,
and hence generally weaker correlations in the disordered
phase, than either Glauber or heat bath rates. On the other
hand, the latter two generate practically indistinguishable
data. These features can be understood in terms of a few
basic properties of the three rates: At a given temperature,
Metropolis rates tend to accept all moves with a somewhat
higher probability than the other two rate functions. In other
words, a system which evolves under the Metropolis algo-
rithm “sees” an effectively higher temperature than if it were
running under heat bath or Glauber. A similar observation
was made recently for field-driven Ising or solid-on-solid
interfaces, subject to Glauber and Metropolis dynamics:
there, Metropolis rates appear to lead to rougher interfaces

and higher propagation velocities than Glauber rates[19]. In
contrast, heat bath and Glauber rates partition the unit inter-
val into the same subsections and accept/reject moves ac-
cording to this partition. As a result, they generate statisti-
cally indistinguishable trajectories in configuration space,
leading to essentially identical data.

It is essential to note, however, that thebroad character-
istics, associated with the breaking of detailed balance, are
clearly observed in all three dynamics: all structure factors
show the typical discontinuity singularity at the origin which,
in turn, translates into power law decays of the two-point
correlation functions. To summarize,universal features, as-
sociated withglobal symmetries, remain independent oflo-
cal changes of dynamic rules, both near and far from equi-
librium.

In a second part of this paper, we discuss the energy his-
togramsHsE,bd associated with our two models, generated
by heat bath and Metropolis dynamics. For the equilibrium
system, the independence of the choice of dynamics is borne
out again, while differences emerge in the driven case. A
simple ratio, RsE,E8d, constructed from two histograms
measured at different temperaturesb1 and b2, allows us to
probe their functional form for a specified dynamics. In equi-
librium, the canonical distribution prescribes a simple expo-
nential dependence, lnR0=−sb1−b2dsE−E8d. Remarkably,
its nonequilibrium counterpart lnR` is also exponential in
sE−E8d. This behavior indicates a smooth dependence of
FsE,bd;−ln HsE,bd on E, allowing us to linearize lnR` in
sE−E8d. The slope of the resulting straight line depends on
the dynamics and probes the derivatives]F /]Ed. Further,
and more detailed, studies of this type may reveal some of
the hidden “thermodynamics” of this remarkably complex
nonequilibrium steady state.
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